

## **Project Details**

Title: Development of new electrode materials and understanding of degradation mechanisms on Solid Oxide High Temperature Electrolysis Cells Acronym: SElySOs Project ID: 671481 Call: H2020-JTI-FCH-2014-1 Application Area: "Research in electrolysis for cost effective hydrogen production" Project type: Research and Innovation Action Starting date: November 2<sup>nd</sup>, 2015 Duration: 48 months Coordinator: Foundation for Research and Technology Hellas, (FORTH) Contacts Dr. Stylianos Neophytides (<u>neoph@iceht.forth.gr</u>) and Dr. Dimitrios K. Niakolas (<u>niakolas@iceht.forth.gr</u>)

## Description

The aim of this research is to understand the degradation and lifetime fundamentals of the high (700–900 °C) temperature  $H_2O$  electrolysis and to a certain extent for the  $H_2O/CO_2$  coelectrolysis. The project is focusing on both of the Solid Oxide Electrolysis Cell (SOEC) electrodes, for minimization of their degradation and improvement of their performance and stability mainly under high temperature  $H_2O$  electrolysis for the production of  $H_2$  and to a certain extent under  $H_2O/CO_2$  co- electrolysis conditions for the production of syngas ( $H_2$  and CO).

## **Project Partners**

- Foundation for Research and Technology Hellas, (FORTH), Greece
- Centre for Research & Technology Hellas, (CERTH), Greece
- Forschungszentrum Juelich GMBH, (Juelich), Germany
- Vysoka Skola Chemicko-Technologicka V Praze, (VSCHT), Czech Republic
- Centre National de la Reserche Scientifique, (CNRS), France
- Prototech AS (CMR Prototech ), Norway
- PyroGenesis SA (PyroGenesis SA), Greece